Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.070
Filtrar
1.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597493

RESUMO

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Assuntos
Paraquat , Sistema Renina-Angiotensina , Ratos , Animais , Masculino , Espécies Reativas de Oxigênio/metabolismo , Paraquat/metabolismo , Paraquat/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Creatinina/metabolismo , Creatinina/urina , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Rim , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Sódio/metabolismo , Sódio/farmacologia , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia
2.
Ren Fail ; 46(1): 2334396, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38570195

RESUMO

OBJECTIVES: Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS: We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS: CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS: In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.


Assuntos
Injúria Renal Aguda , Calcinose , Hiperoxalúria , Humanos , Oxalato de Cálcio/química , Creatinina/metabolismo , Rim/patologia , Hiperoxalúria/complicações , Oxalatos/metabolismo , Injúria Renal Aguda/patologia , Citratos/metabolismo , Ácido Cítrico
3.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607075

RESUMO

GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.


Assuntos
Nefropatias , Podócitos , Humanos , Camundongos , Animais , Podócitos/metabolismo , Puromicina Aminonucleosídeo/efeitos adversos , Puromicina Aminonucleosídeo/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Creatinina/metabolismo , Nefropatias/metabolismo , Inflamação/metabolismo , Camundongos Knockout
4.
Ren Fail ; 46(1): 2338565, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622926

RESUMO

Background: Renal hypoxia plays a key role in the progression of chronic kidney disease (CKD). Shen Shuai II Recipe (SSR) has shown good results in the treatment of CKD as a common herbal formula. This study aimed to explore the effect of SSR on renal hypoxia and injury in CKD rats. Methods: Twenty-five Wistar rats underwent 5/6 renal ablation/infarction (A/I) surgery were randomly divided into three groups: 5/6 (A/I), 5/6 (A/I) + losartan (LOS), and 5/6 (A/I) + SSR groups. Another eight normal rats were used as the Sham group. After 8-week corresponding interventions, blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) was performed to evaluate renal oxygenation in all rats, and biochemical indicators were used to measure kidney and liver function, hemoglobin, and proteinuria. The expression of fibrosis and hypoxia-related proteins was analyzed using immunoblotting examination. Results: Renal oxygenation, evaluated by BOLD-fMRI as cortical and medullary T2* values (COT2* and MET2*), was decreased in 5/6 (A/I) rats, but increased after SSR treatment. SSR also downregulated the expression of hypoxia-inducible factor-1α (HIF-1α) in 5/6 (A/I) kidneys. With the improvement of renal hypoxia, renal function and fibrosis were improved in 5/6 (A/I) rats, accompanied by reduced proteinuria. Furthermore, the COT2* and MET2* were significantly positively correlated with the levels of creatinine clearance rate (Ccr) and hemoglobin, but negatively associated with the levels of serum creatinine (SCr), blood urea nitrogen (BUN), serum cystatin C (CysC), serum uric acid (UA), 24-h urinary protein (24-h Upr), and urinary albumin:creatinine ratio (UACR). Conclusion: The degree of renal oxygenation reduction is correlated with the severity of renal injury in CKD. SSR can improve renal hypoxia to attenuate renal injury in 5/6 (A/I) rats of CKD.


Assuntos
Insuficiência Renal Crônica , Ácido Úrico , Ratos , Animais , Creatinina/metabolismo , Ácido Úrico/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Rim , Isquemia , Infarto/metabolismo , Infarto/patologia , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia/patologia , Fibrose , Proteinúria/patologia , Imageamento por Ressonância Magnética/métodos , Hemoglobinas/metabolismo
5.
Clin Epigenetics ; 16(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167534

RESUMO

BACKGROUND: The objective of this study was to examine and analyze differential methylation profiles in order to investigate the influence of hyper-methioninemia (HM) on the development of diabetic nephropathy (DN). Male Wistar rats, aged eight weeks and weighing 250-300 g, were randomly assigned into four groups: a control group (Healthy, n = 8), streptozocin-induced rats (STZ group, n = 8), HM + STZ group (n = 8), and the Tangshen Formula (TSF) treatment group (TSF group, n = 8). Blood glucose levels and other metabolic indicators were monitored before treatment and at four-week intervals until 12 weeks. Total DNA was extracted from the aforementioned groups, and DNA methylation landscapes were analyzed via reduced representative bisulfite sequencing. RESULTS: Both the STZ group and HM + STZ group exhibited increased blood glucose levels and urinary albumin/creatinine ratios in comparison with the control group. Notably, the HM + STZ group exhibited a markedly elevated urinary albumin/creatinine ratio (411.90 ± 88.86 mg/g) compared to the STZ group (238.41 ± 62.52 mg/g). TSF-treated rats demonstrated substantial reductions in both blood glucose levels and urinary albumin/creatinine ratios in comparison with the HM + STZ group. In-depth analysis of DNA methylation profiles revealed 797 genes with potential therapeutic effects related to TSF, among which approximately 2.3% had been previously reported as homologous genes. CONCLUSION: While HM exacerbates DN through altered methylation patterns at specific CpG sites, TSF holds promise as a viable treatment for DN by restoring abnormal methylation levels. The identification of specific genes provides valuable insights into the underlying mechanisms of DN pathogenesis and offers potential therapeutic targets for further investigation.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Masculino , Animais , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Glicemia , Metionina/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Creatinina/metabolismo , Creatinina/farmacologia , Creatinina/uso terapêutico , Ratos Wistar , Metilação de DNA , Rim/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Albuminas/metabolismo
6.
Animal ; 18(2): 101049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215677

RESUMO

Our understanding of metabolic alterations triggered by heat stress is incomplete, which limits the designing of nutritional strategies to mitigate negative productive and health effects. Thus, this study aimed to explore the metabolic responses of heat-stressed dairy cows to dietary supplementation with vitamin D3/Ca and vitamin E/Se. Twelve multiparous Holstein cows were enrolled in a split-plot Latin square design with two distinct vitamin E/Se supplementation levels, either at a low (ESe-, n = 6, 11.1 IU/kg vitamin E and 0.55 mg/kg Se) or a high dose (ESe+, n = 6 223 IU/kg vitamin E and 1.8 mg/kg Se) as the main plot. Treatment subplots, arranged in a replicated 3 × 3 Latin square design, comprised heat challenge (Temperature Humidity Index, THI: 72.0-82.0) supplemented with different levels of vitamin D3/Ca: either low (HS/DCa-, 1 012 IU/kg and 0.73%, respectively) or high (HS/DCa+, 3 764 IU/kg and 0.97%, respectively), and a pair-fed control group in thermoneutrality (THI = 61.0-64.0) receiving the low dose of vitamin D3/Ca (TN). The liquid chromatography-mass spectrometry-based metabolome profile was determined in blood plasma and milk sampled at the beginning (day 0) and end (day 14) of each experimental period. The results were analyzed for the effect of (1) TN vs. HS/ESe-/DCa-, and (2) the vitamin E/Se and vitamin D3/Ca supplementation. No group or group × day effects were detected in the plasma metabolome (false discovery rate, FDR > 0.05), except for triglyceride 52:2 being higher (FDR = 0.03) on day 0 than 14. Taurine, creatinine and butyryl-carnitine showed group × day interactions in the milk metabolome (FDR ≤ 0.05) as creatinine (+22%) and butyryl-carnitine (+190%) were increased (P < 0.01) on day 14, and taurine was decreased (-65%, P < 0.01) on day 14 in the heat stress (HS) cows, compared with day 0. Most compounds were unaffected by vitamin E/Se or vitamin D3/Ca supplementation level or their interaction (FDR > 0.05) in plasma and milk, except for milk alanine which was lower (-69%, FDR = 0.03) in the E/Se+ groups, compared with E/Se-. Our results indicated that HS triggered more prominent changes in the milk than in the plasma metabolome, with consistent results in milk suggesting increased muscle catabolism, as reflected by increased creatinine, alanine and citrulline levels. Supplementing with high levels of vitamin E/Se or vitamin D3/Ca or their combination did not appear to affect the metabolic remodeling triggered by HS.


Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Creatinina/análise , Creatinina/metabolismo , Creatinina/farmacologia , Dieta/veterinária , Temperatura Alta , Suplementos Nutricionais/análise , Resposta ao Choque Térmico , Vitamina E , Carnitina/metabolismo , Alanina/análise , Alanina/metabolismo , Alanina/farmacologia , Aminoácidos/metabolismo , Vitamina D/metabolismo
7.
Can J Physiol Pharmacol ; 102(2): 128-136, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683291

RESUMO

Renal toxicity is one of the side effects of methotrexate (MTX). Therefore, this study explored the use of astaxanthin (AST), as a natural carotenoid, against MTX-induced nephrotoxicity emphasizing the changes in oxidative stress and the expression of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1). During the 10 days of the experiment, male Wistar rats in different groups received MTX (10 mg/kg) on days 6, 8, and 10 and three doses of AST (25, 50, and 75 mg/kg) during the entire course. Renal failure caused by MTX was observed in significant histopathological changes and a significant increase in serum levels of creatinine, urea, and uric acid (p < 0.05). Oxidative change induced by MTX injection was also observed by remarkably increasing the tissue level of malondialdehyde (MDA) and decreasing the activity of superoxide dismutase (SOD) and catalase (p < 0.001). AST decreases the adverse effects of MTX by upregulating the expression of Nrf2/HO-1 genes (p < 0.01) and decreasing the tissue level of MDA (p < 0.01). Also, AST significantly reduced the amount of creatinine, urea, and uric acid in the serum and improved the activity of SOD and catalase in the kidney tissue (p < 0.05). Thus, AST may protect the kidney against oxidative stress caused by MTX.


Assuntos
Injúria Renal Aguda , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Catalase/metabolismo , Ratos Wistar , Ácido Úrico/metabolismo , Creatinina/metabolismo , Rim , Metotrexato/farmacologia , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Superóxido Dismutase/metabolismo , Ureia/farmacologia , Xantofilas
8.
Ultrastruct Pathol ; 48(1): 29-41, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37970647

RESUMO

Investigation the protective effect of transient receptor potential channel modulator 2-Aminoethoxydiphenyl Borate (2-APB) on aminoglycoside nephrotoxicity caused by reactive oxygen species, calcium-induced apoptosis and inflammation was aimed. Forty Wistar rats were divided (n=8) as follows: Control group; DMSO group; 2-APB group; Gentamicin group (injected 100 mg/kg gentamicin intramuscularly for 10 days); Gentamicin+ 2-APB group (injected 2 mg/kg 2-APB intraperitoneally, then after 30 minutes 100 mg/kg gentamicin was injected intramuscularly for 10 days). Blood samples were collected for biochemical analyses, kidney tissue samples were collected for light, electron microscopic and immunohistochemical investigations. In gentamicin group glomerular degeneration, tubular dilatation, vacuolization, desquamation of tubular cells and hyaline cast formation in luminal space and leukocyte infiltration were seen. Disorganization of microvilli of tubular cells, apical cytoplasmic blebbing, lipid accumulation, myelin figure like structure formation, increased lysosomes, mitochondrial swelling and disorganization of cristae structures, apoptotic changes and widening of intercellular space were found. TNF-α, IL-6 and caspase 3 expressions were increased. BUN and creatinine concentrations were increased. Increase in MDA levels and decrease in SOD activities were determined. Even though degeneration still continues in gentamicin+2-APB treatment group, severity and the area it occupied were decreased and the glomerular and tubule structures were generally preserved. TNF-α, IL-6, caspase 3 immunoreactivities and BUN, creatinine, MDA concentrations were reduced and SOD activities were increased markedly compared to gentamicin group. In conclusion, it has been considered that 2-APB can prevent gentamicin mediated nephrotoxicity with its anti-oxidant, anti-apoptotic and anti-inflammatory effects.


Assuntos
Nefropatias , Rim , Ratos , Animais , Caspase 3/metabolismo , Caspase 3/farmacologia , Aminoglicosídeos/efeitos adversos , Aminoglicosídeos/metabolismo , Ratos Wistar , Creatinina/metabolismo , Creatinina/farmacologia , Fator de Necrose Tumoral alfa , Interleucina-6 , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Antibacterianos/efeitos adversos , Antioxidantes/farmacologia , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
9.
Am J Physiol Renal Physiol ; 326(1): F135-F142, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942539

RESUMO

Several human studies have used the mitochondrial antioxidant MitoQ. Recent in vitro data indicating that MitoQ may induce nephrotoxicity caused concern regarding the safety of MitoQ on the kidneys, but the doses were supraphysiological. Therefore, we sought to determine whether acute MitoQ elicits changes in urinary biomarkers associated with tubular injury in healthy adults with our hypothesis being there would be no changes. Using a randomized crossover design, 32 healthy adults (16 females and 16 males, 29 ± 11 yr old) consumed MitoQ (100-160 mg based on body mass) or placebo capsules. We obtained serum samples and a 4- to 6-h postcapsule consumption urine sample. We assessed creatinine clearance and urine kidney injury biomarkers including the chitinase 3-like-1 gene product YKL-40, kidney-injury marker-1, monocyte chemoattractant protein-1, epidermal growth factor, neutrophil gelatinase-associated lipocalin, interleukin-18, and uromodulin using multiplex assays. We used t tests, Wilcoxon tests, and Hotelling's T2 to assess global differences in urinary kidney injury markers between conditions. Acute MitoQ supplementation did not influence urine flow rate (P = 0.086, rrb = 0.39), creatinine clearance (P = 0.085, rrb = 0.42), or urinary kidney injury markers (T22,8 = 30.6, P = 0.121, univariate ps > 0.064). Using exploratory univariate analysis, MitoQ did not alter individual injury markers compared with placebo (e.g., placebo vs. MitoQ: YKL-40, 507 ± 241 vs. 442 ± 236 pg/min, P = 0.241; kidney injury molecule-1, 84.1 ± 43.2 vs. 76.2 ± 51.2 pg/min, P = 0.890; and neutrophil gelatinase-associated lipocalin, 10.8 ± 10.1 vs. 9.83 ± 8.06 ng/min, P = 0.609). In conclusion, although longer-term surveillance and data are needed in clinical populations, our findings suggest that acute high-dose MitoQ had no effect on urinary kidney injury markers in healthy adults.NEW & NOTEWORTHY We found acute high-dose mitochondria-targeted antioxidant (MitoQ) supplementation was not nephrotoxic and had no effect on markers of acute kidney injury in healthy adults. These findings can help bolster further confidence in the safety of MitoQ, particularly for future investigations seeking to examine the role of mitochondrial oxidative stress, via acute MitoQ supplementation, on various physiological outcomes.


Assuntos
Injúria Renal Aguda , Antioxidantes , Masculino , Adulto , Feminino , Humanos , Lipocalina-2/metabolismo , Estudos Cross-Over , Proteína 1 Semelhante à Quitinase-3/metabolismo , Antioxidantes/metabolismo , Creatinina/metabolismo , Rim/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Biomarcadores/urina
10.
Am J Physiol Renal Physiol ; 326(2): F227-F240, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031729

RESUMO

Proximal tubular uptake of aristolochic acid (AA) forms aristolactam (AL)-DNA adducts, which cause a p53/p21-mediated DNA damage response and acute tubular injury. Recurrent AA exposure causes kidney function loss and fibrosis in humans (Balkan endemic nephropathy) and mice and is a model of (acute kidney injury) AKI to chronic kidney disease (CKD) transition. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. C57BL/6J mice (15-wk-old) were administered vehicle or AA every 3 days for 3 wk (10 and 3 mg/kg ip in females and males, respectively). Dapagliflozin (dapa, 0.01 g/kg diet) or vehicle was initiated 7 days prior to AA injections. All dapa effects were sex independent, including a robust glycosuria. Dapa lowered urinary kidney-injury molecule 1 (KIM-1) and albumin (both normalized to creatinine) after the last AA injection and kidney mRNA expression of early DNA damage response markers (p53 and p21) 3 wk later at the study end. Dapa also attenuated AA-induced increases in plasma creatinine as well as AA-induced up-regulation of renal pro-senescence, pro-inflammatory and pro-fibrotic genes, and kidney collagen staining. When assessed 1 day after a single AA injection, dapa pretreatment attenuated AL-DNA adduct formation by 10 and 20% in kidney and liver, respectively, associated with reduced p21 expression. Initiating dapa application after the last AA injection also improved kidney outcome but in a less robust manner. In conclusion, the first evidence is presented that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.NEW & NOTEWORTHY Recurrent exposure to aristolochic acid (AA) causes kidney function loss and fibrosis in mice and in humans, e.g., in the form of the endemic Balkan nephropathy. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. Here we provide the first evidence in a murine model that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.


Assuntos
Ácidos Aristolóquicos , Nefropatia dos Bálcãs , Compostos Benzidrílicos , Glucosídeos , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Masculino , Feminino , Camundongos , Animais , Nefropatia dos Bálcãs/metabolismo , Nefropatia dos Bálcãs/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Modelos Animais de Doenças , Creatinina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Ácidos Aristolóquicos/toxicidade , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Fibrose , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Sódio/metabolismo
11.
Ann Clin Biochem ; 61(1): 8-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550595

RESUMO

Creatinine-based estimated glomerular filtration rate equations (eGFRcreatinine) are used to measure excretory kidney function in clinical practice. Despite inter and intra-patient variability, eGFRcreatinine has excellent clinical utility and provides the basis for the classification system for chronic kidney disease (CKD), for kidney function monitoring, treatment interventions and referral pathways. The 4-variable modification of diet in renal disease (MDRD) eGFRcreatinine equation was introduced in 2000 and recommended by the National Institute for Health and Care Excellence (NICE) in 2008. Subsequently, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) eGFRcreatinine equation was introduced in 2009 and is more accurate than MDRD in patients with mild and moderate CKD. In 2014, NICE recommended that CKD-EPI eGFRcreatinine replace MDRD eGFRcreatinine in routine clinical practice across England. Both equations originally incorporated adjustments for age, gender and ethnicity. However, the evidence for ethnicity adjustment has been increasingly questioned, and in 2021 NICE recommended that kidney function should be estimated by CKD-EPI eGFRcreatinine without using ethnicity adjustment. Recently, a CKD-EPI equation has been presented without ethnicity adjustment; however, this has not been validated outside of North America and NICE continues to recommend CKD-EPI 2009. We review the status of eGFRcreatinine in clinical practice, including the limitations of eGFRcreatinine and the rationale for removal of ethnicity adjustment and the potential impact of this change on clinical care for patients with kidney disease.


Assuntos
Etnicidade , Insuficiência Renal Crônica , Humanos , Taxa de Filtração Glomerular , Creatinina/metabolismo , Inglaterra
12.
Clin Chem Lab Med ; 62(2): 253-261, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37773773

RESUMO

OBJECTIVES: Chronic kidney disease (CKD) is a global health issue, ranking as the third leading cause of death worldwide. CKD diagnosis and management depend on clinical laboratory tests, necessitating consistency for precise patient care. Global harmonization of CKD testing through clinical practice guidelines (CPGs) is recommended. Prior to CPG development, assessing the current CKD testing landscape is crucial. In 2022, the European Federation of Laboratory Medicine (EFLM) conducted an online survey among European laboratories associated with EFLM, evaluating CKD testing practices, including new glomerular filtration rate (GFR) estimation methods. This report summarizes the 2022 survey findings and offers recommendations for improving CKD test standardization. METHODS: An online survey was conducted in November 2022 using a questionnaire hosted on LimeSurvey sent to European laboratories affiliated with the EFLM. The survey results were recorded in Excel files and analysed. RESULTS: The results highlight significant discrepancies among countries in unit expression, methods, cystatin C use, and GFR calculation equations. Additionally, limited attention to pediatric renal biology specifics, varied proteinuria and albuminuria result expressions, and limited awareness of GFR measurement methods through iohexol clearance are noted. CONCLUSIONS: In an effort to enhance the standardization of crucial biomarkers utilized in nephrology for evaluating renal function and diagnosing kidney injuries, the EFLM Task Group on CKD suggests nine practical recommendations tailored for European laboratories. The group is confident that implementing these measures will minimize result expression discrepancies, ultimately leading to enhanced patient care.


Assuntos
Laboratórios , Insuficiência Renal Crônica , Humanos , Criança , Testes de Função Renal/métodos , Taxa de Filtração Glomerular , Biomarcadores , Inquéritos e Questionários , Insuficiência Renal Crônica/diagnóstico , Creatinina/metabolismo
13.
Int J Biol Macromol ; 258(Pt 1): 128839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134998

RESUMO

In this study, we aim to unveil the potential of itaconyl chondroitin sulfate nanogel (ICSNG) in tackling chronic kidney diseases triggered by the administration of CDDP and doxorubicin (Adriamycin, ADR). To that end, the new drug delivery system (ICSNG) was initially prepared, characterized, and loaded with the target drugs. Thereafter, the in-vivo studies were performed using five equally divided groups of 100 male Sprague-Dawley (SD) rats. Biochemical evaluation and immunohistochemistry studies have revealed the renal toxicity and the ameliorative effects of ICSNG on renal function. When ICSNG-based treatments were contrasted with the CDDP and ADR infected groups, they significantly increased paraoxonase-1 (PON-1), superoxide dismutase (SOD), catalase (CAT) and albumin activity and significantly decreased nitric oxide (NO), tumor necrosis factor alpha (TNF-α), creatinine, urea, and cyclooxygenase-2 (COX-2) activity (p < 0.001). The findings of the current study imply that ICSNG may be able to lessen renal inflammation and damage in chronic kidney disorders brought on by the administration of CDDP and ADR. Interestingly, according to the estimated selectivity indices, the ICSNG-encapsulated drugs have demonstrated superior selectivity for cancer MCF-7 cells, over healthy HSF cells, in comparison to the bare drugs.


Assuntos
Cisplatino , Rim , Polietilenoglicóis , Polietilenoimina , Ratos , Masculino , Animais , Cisplatino/farmacologia , Sulfatos de Condroitina/farmacologia , Nanogéis , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Doxorrubicina/farmacologia , Estresse Oxidativo , Creatinina/metabolismo
14.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069178

RESUMO

We have previously shown that an excess of deoxycorticosterone acetate and high sodium chloride intake (DOCA/salt) in one-renin gene mice induces a high urinary Na/K ratio, hypokalemia, and cardiac and renal hypertrophy in the absence of hypertension. Dietary potassium supplementation prevents DOCA/salt-induced pathological processes. In the present study, we further study whether DOCA/salt-treated mice progressively develop chronic inflammation and fibrosis in the kidney and whether dietary potassium supplementation can reduce the DOCA/salt-induced renal pathological process. Results showed that (1) long-term DOCA/salt-treated one-renin gene mice developed severe kidney injuries including tubular/vascular hypertrophy, mesangial/interstitial/perivascular fibrosis, inflammation (lymphocyte's immigration), proteinuria, and high serum creatinine in the absence of hypertension; (2) there were over-expressed mRNAs of plasminogen activator inhibitor-1 (PAI-1), fibronectin, collagen type I and III, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP1), transforming growth factor-ß (TGF-ß), tumor necrosis factor-alpha (TNF-α), osteopontin, Nuclear factor kappa B (NF-κB)/P65, and intercellular adhesion molecule (ICAM)-1; and (3) dietary potassium supplementation normalized urinary Na/K ratio, hypokalemia, proteinuria, and serum creatinine, reduced renal hypertrophy, inflammations, and fibrosis, and down-regulated mRNA expression of fibronectin, Col-I and III, TGF-ß, TNF-α, osteopontin, and ICAM without changes in the blood pressure. The results provide new evidence that potassium and sodium may modulate proinflammatory and fibrotic genes, leading to chronic renal lesions independent of blood pressure.


Assuntos
Acetato de Desoxicorticosterona , Glomerulonefrite , Hipertensão , Hipopotassemia , Camundongos , Animais , Pressão Sanguínea , Cloreto de Sódio/metabolismo , Fibronectinas/metabolismo , Osteopontina/metabolismo , Potássio na Dieta/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Cloretos/metabolismo , Renina/metabolismo , Hipopotassemia/patologia , Fator de Necrose Tumoral alfa/metabolismo , Creatinina/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Glomerulonefrite/patologia , Inflamação/metabolismo , Suplementos Nutricionais , Fator de Crescimento Transformador beta/metabolismo , Proteinúria/metabolismo , Hipertrofia/metabolismo , Fibrose , Acetatos/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-37946347

RESUMO

AIM: The research intended to explore the possible nephroprotective potential of the ethyl acetate fraction derived from Acacia catechu leaves against nephrotoxicity brought about by 5-fluorouracil (5-FU) in Wistar rats. BACKGROUND: While possessing strong anticancer properties, 5-FU is hindered in its therapeutic application due to significant organ toxicity linked to elevated oxidative stress and inflammation. OBJECTIVE: The study is undertaken to conduct an analysis of the ethyl acetate fraction of A. catechu leaves both in terms of quality and quantity, examining its impact on different biochemical and histopathological parameters within the context of 5-FU-induced renal damage in rats and elucidation of the mechanism behind the observed outcomes. METHODOLOGY: Intraperitoneal injection of 5-FU at a dosage of 20 mg/kg/day over 5 days was given to induce nephrotoxicity in rats. The evaluation of nephrotoxicity involved quantifying serum creatinine, urea, uric acid, and electrolyte concentrations. Furthermore, superoxide dismutase, catalase antioxidant enzymes, and TNF-α concentration in serum were also measured. RESULTS: 5-FU injection led to the initiation of oxidative stress within the kidneys, leading to modifications in renal biomarkers (including serum creatinine, urea, uric acid, and Na+, K+ levels), and a reduction in antioxidant enzymes namely superoxide dismutase and catalase. Notably, the presence of the inflammatory cytokine TNF-α was significantly elevated due to 5-FU. Microscopic examination of renal tissue revealed tubular degeneration and congestion. However, treatment involving the ethyl acetate fraction derived from A. catechu leaves effectively and dose-dependently reversed the changes observed in renal biomarkers, renal antioxidant enzymes, inflammatory mediators, and histopathological features, bringing them closer to normal conditions. The observed recuperative impact was mainly attributed to the antioxidant and antiinflammatory properties of the fraction. CONCLUSION: The ethyl acetate fraction of A. catechu leaves exhibited a mitigating influence on the renal impairment caused by 5-FU, showcasing its potential as a nephroprotective agent capable of preventing and ameliorating 5-FU-induced nephrotoxicity.


Assuntos
Acacia , Antioxidantes , Ratos , Animais , Ratos Wistar , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catalase/metabolismo , Catalase/farmacologia , Acacia/metabolismo , Fluoruracila/toxicidade , Fluoruracila/metabolismo , Creatinina/metabolismo , Creatinina/farmacologia , Fator de Necrose Tumoral alfa , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Estresse Oxidativo , Rim , Inflamação/tratamento farmacológico , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Ureia/metabolismo , Ureia/farmacologia , Biomarcadores
16.
Open Vet J ; 13(10): 1268-1276, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38027401

RESUMO

Background: Pomegranate granatum (molasses and peels) and its constituents showed protective effects against natural toxins such as phenylhydrazine (PHZ) as well as chemical toxicants such as arsenic, diazinon, and carbon tetrachloride. Aim: The current study aimed to assess the effect of pomegranate molasses (PM), white peel extract, and red peel extract on nephrotoxicity induced by PHZ. Methods: 80 male rats were divided into eight equal groups; a control group, PM pure group, white peel pomegranate pure group, red peel pomegranate pure group, PHZ group, PM + PHZ group, white peel pomegranate + PHZ group and red peel pomegranate + PHZ group. Kidney function, inflammation markers, antioxidant activities, and renal tissue histopathology were investigated. Results: The results revealed that PHZ group showed a significant increase in lactate Dehydrogenase (LDH), malondialdehyde (MDA), creatinine, uric acid, BUNBUN, C - reactive protein (CRP), tumor necrosis factor, thiobarbituric acid reactive substances (TBARSs), and total antioxidant capacity (TAC) with a significant decrease of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as compared with a control group. Other pomegranate-treated and PHZ co-treated groups with pomegranate showed a significant decrease of LDH, MDA, creatinine, uric acid, BUN, tumor necrosis factor, TBARSs, and TAC with a significant increase of CAT, GPx, and SOD as compared with PHZ group. Conclusion: Collectively, our data suggest that red, white peels, and molasses have anti-toxic and anti-inflammatory effects on renal function and tissues.


Assuntos
Antioxidantes , Punica granatum , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Antioxidantes/metabolismo , Punica granatum/metabolismo , Frutas/química , Frutas/metabolismo , Ácido Úrico/análise , Ácido Úrico/metabolismo , Creatinina/análise , Creatinina/metabolismo , Extratos Vegetais/farmacologia , Rim/metabolismo , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Fatores de Necrose Tumoral/análise , Fatores de Necrose Tumoral/metabolismo , Fenil-Hidrazinas/análise , Fenil-Hidrazinas/metabolismo
17.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893532

RESUMO

Background and Objectives: Paracetamol overdose is a significant global issue due to its widespread use, which can lead to a lack of awareness regarding its potential side effects. Paracetamol can harm the liver, possibly resulting in liver failure. Conversely, this study employed extracts from Petroselinum crispum (PC), known for its rich content of bioactive compounds, with demonstrated antioxidant properties shown in previous research as well as protective effects against various diseases. The primary objective of this study was to investigate the potential protective effects of Petroselinum crispum on altered hematological and biochemical parameters in the blood of rats exposed to paracetamol. Materials and Methods: The study involved twenty Wistar rats divided into four groups. Different groups of male rats were administered PC extract at 200 mg/kg body weight daily for 15 days, along with a standard reference dose of paracetamol at 200 mg/kg. The study assessed hepatoprotection capacity by analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, albumin, and lipid profiles. Renal safety was evaluated through creatinine, urea, uric acid, lactate dehydrogenase (LDH), and total protein. Additionally, histopathological examinations of the liver and kidneys were conducted. Results: Following Paracetamol overdose, there were reductions in hemoglobin levels, serum total protein, albumin, and uric acid. Paracetamol overdose also elevated levels of several blood biomarkers, including creatinine, urea, nitrogen, ALT, AST, triglycerides, LDH activity, white blood cell count, and platelet count compared to the control group. However, using an ethanolic extract of Petroselinum crispum significantly mitigated the severity of these alterations and the extent of the effect correlated with the dose administered. Parsley extract helped prevent proteinuria and low hemoglobin, which are common side effects of Paracetamol. Conclusions: Therefore, parsley may hold promise in managing liver and kidney conditions-particularly in addressing proteinuria. Ultimately, these results may have implications for human health by potentially mitigating paracetamol-induced renal, hepatic, and hematological toxicity.


Assuntos
Acetaminofen , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Ratos , Masculino , Animais , Acetaminofen/toxicidade , Petroselinum , Ratos Wistar , Ácido Úrico/farmacologia , Creatinina/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Fígado , Proteinúria , Albuminas , Ureia , Hemoglobinas
18.
Biochem Pharmacol ; 218: 115855, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866804

RESUMO

BACKGROUND: Mitochondrial dysfunction is a well-established result of acute kidney injury (AKI). Previously, we identified that 5-hydroxytryptamine 1F (5-HT1F) receptor agonism with lasmiditan induces mitochondrial biogenesis (MB) and improves renal vasculature and function in an AKI mouse model. We hypothesize that lasmiditan also modulates mitochondrial dynamics and mitophagy in a mouse model of AKI. METHODS: Male mice were subjected to renal ischemia/reperfusion (I/R) and treated daily with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury for 3 or 6d. Serum creatinine was measured to estimate glomerular filtration. Electron microscopy was used to assess mitochondrial morphology and mitophagy. Mitochondrial-related protein were confirmed with immunoblotting. Mitochondrial function was assessed with ATP measurements. RESULTS: Lasmiditan treatment improved mitochondrial and kidney recovery as early as 3d post-AKI, as evidenced by increased ATP, and decreased serum creatinine, respectively. Electron micrographs of renal cortices revealed that lasmiditan also decreased mitochondrial damage and increased mitochondrial area and size by 6d after I/R injury. Additionally, lasmiditan treatment increased mitolysosomes by 3d, indicating induction of mitophagy. Phosphorylation of mitophagy-related proteins were also increased in the renal cortices of lasmiditan-treated AKI mice 3d after I/R injury, whereas fusion-related proteins were increased at 6d after I/R injury. CONCLUSION: These data reveal that lasmiditan accelerates renal recovery, restores normal mitochondrial membrane and cristae morphology, decreases excessive mitochondrial fission, and accelerates mitophagy post-AKI in a time-dependent manner, establishing mitochondrial function and recovery from AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Creatinina/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Modelos Animais de Doenças , Trifosfato de Adenosina/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-37778452

RESUMO

Methyl tert-butyl ether (MTBE) is soluble in water and can contaminate water sources when it spills during transportation or leaks from underground storage tanks. Incomplete combustion releases MTBE as exhaust fumes that can be deposited on urban surfaces. Meanwhile, car tires erosion emits of large amounts of rubber dust (RP), easily transported to water bodies. Therefore, this study has the objective of assessing the toxicity of varying concentrations of MTBE (0, 2.5, 5.0 µL L-1) and RP (0, 5.0, 10.0 mg L-1 RP), both individually and in combination, over a period of 28 days on Nile tilapia (Oreochromis niloticus). MTBE and PR decreased fish growth performance. Blood biochemical analytes indicated that MTBE and RP led to increasing Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and creatinine phosphokinase (CPK), alkaline phosphatase and gamma-glutamyl transferase (GGT) activities. Alterations related to glucose, triglycerides, cholesterol, and creatinine, plasma contents, were also observed. Increased antioxidant biomarkers, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), glutathione reductase (GR), and malondialdehyde (MDA), was observed. Exposure fish to MTBE and PR changed metabolic profile of muscle tissue. Moreover, results showed that MTBE, its metabolites, and PR could accumulate in the muscle tissue of fish. Results suggest that MTBE and RP can impact fish health, both individually and when combined. The presence of MTBE enhances the toxicity of RP, indicating a synergistic effect. Nevertheless, further studies are needed to understand the impact of toxic compounds on aquatic environments and organisms' health.


Assuntos
Ciclídeos , Animais , Ciclídeos/metabolismo , Pós/metabolismo , Pós/farmacologia , Borracha/toxicidade , Borracha/metabolismo , Estresse Oxidativo , Creatinina/metabolismo , Creatinina/farmacologia , Água/metabolismo
20.
Sci Rep ; 13(1): 17429, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833387

RESUMO

Next to the skin, the peritoneum is the largest human organ, essentially involved in abdominal health and disease states, but information on peritoneal paracellular tight junctions and transcellular channels and transporters relative to peritoneal transmembrane transport is scant. We studied their peritoneal localization and quantity by immunohistochemistry and confocal microscopy in health, in chronic kidney disease (CKD) and on peritoneal dialysis (PD), with the latter allowing for functional characterizations, in a total of 93 individuals (0-75 years). Claudin-1 to -5, and -15, zonula occludens-1, occludin and tricellulin, SGLT1, PiT1/SLC20A1 and ENaC were consistently detected in mesothelial and arteriolar endothelial cells, with age dependent differences for mesothelial claudin-1 and arteriolar claudin-2/3. In CKD mesothelial claudin-1 and arteriolar claudin-2 and -3 were more abundant. Peritonea from PD patients exhibited increased mesothelial and arteriolar claudin-1 and mesothelial claudin-2 abundance and reduced mesothelial and arteriolar claudin-3 and arteriolar ENaC. Transperitoneal creatinine and glucose transport correlated with pore forming arteriolar claudin-2 and mesothelial claudin-4/-15, and creatinine transport with mesothelial sodium/phosphate cotransporter PiT1/SLC20A1. In multivariable analysis, claudin-2 independently predicted the peritoneal transport rates. In conclusion, tight junction, transcellular transporter and channel proteins are consistently expressed in peritoneal mesothelial and endothelial cells with minor variations across age groups, specific modifications by CKD and PD and distinct associations with transperitoneal creatinine and glucose transport rates. The latter deserve experimental studies to demonstrate mechanistic links.Clinical Trial registration: The study was performed according to the Declaration of Helsinki and is registered at www.clinicaltrials.gov (NCT01893710).


Assuntos
Insuficiência Renal Crônica , Insuficiência Renal , Humanos , Peritônio/metabolismo , Junções Íntimas/metabolismo , Claudina-1/metabolismo , Células Endoteliais/metabolismo , Claudina-2/metabolismo , Creatinina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal/metabolismo , Glucose/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...